グラスファイバーは、建物、防火、船舶、軍事産業、電気産業などの多くの分野に適用できるユニークな素材です。さまざまな特性を備えたスマートな無機非金属素材です。優れた断熱性、強力な耐熱性、優れた耐食性、高い機械的強度がグラスファイバー素材の利点です。
近代的な建物の屋根プロジェクトでは、巻き上げの損傷は、特に台風やハリケーンになりやすい沿岸地域で、屋根の損傷に対する主な脅威の1つになりました。単一層の屋根材は、軽量、優れた防水性能、便利な建設により、商業ビルや産業工場で広く使用されています。ただし、このような屋根材シ...
続きを読む1。魅惑的な目的と重要性 希望する主な目標は、炭素繊維フィラメントの表面のサイジング層を完全に除去することです。炭素繊維フィラメントの生産プロセスでは、サイジングは保護と潤滑において重要な役割を果たします。織りや処理中にフィラメントが損傷するのを効果的に防ぎ、フィ...
続きを読む1。織りおよび巻線技術の概要 織りと巻線は、炭素繊維糸を処理するための2つの主要な方法です。繊維材料を特定の形状と機能を持つプレフォームに変換できます。織り技術は、二次または3次元の構造を形成するために、横断繊維によって複雑な形状の部品の製造に適していま...
続きを読む1.炭素繊維の層状構造と高弾性特性 高温で炭素化された有機繊維で作られた材料である炭素繊維は、ユニークな層状構造と共有結合接続を備えており、これがその高弾性源の源です。炭化プロセス中に、有機繊維の非炭素元素が徐々に除去され、高度に向いた炭素原子層構造が残ります。こ...
続きを読む層間せん断性能の基本概念 層間のせん断性能とは、層間関節のせん断応力に抵抗する複合材料の能力を指します。 350gの高強度炭素繊維針のフェルトの場合、繊維とマトリックスの間の結合強度、およびその多層構造の層の間の結合強度が、材料の全体的な性能を決定する重要な要因で...
続きを読むカーボンファイバーフェルトの製造技術は、その性能に重大な影響を与えます。特に以下の要素が考慮されます。
1. **繊維の前処理:** 炭素繊維フェルトを製造する前に、通常、繊維は床処理や改質などとともに前処理されることが望まれます。このステップの偉大さは、最終製品の接合電力、成形性、性能バランスに同時に影響を与えます。
2.**製織または成形技術:** 炭素繊維フェルトの成形方法は、製織、プレスまたはその他の種類の成形方法であってもよい。成形手法の違いは、繊維の結合、繊維間の結合、フェルトの厚さの均一性に影響を及ぼし、それによってカーボンファイバーフェルトの電気、張力、安定性に影響を与えます。
3. **熱処理:** 熱処理は、炭素繊維フェルトの生産システム内の重要なステップの 1 つです。温熱療法の温度、時間、環境などのパラメーターを制御することにより、炭素繊維フェルトの結晶化の状態と微細構造を調整することができ、それによってメカニカルハウス、耐熱性、耐食性に影響を与えます。
4. **添加剤と樹脂含浸:** 炭素繊維フェルトの製造プロセスでは、通常、特定の樹脂含浸またはその他の目的の添加剤が導入されます。これらの添加剤は、炭素繊維マットの成形性、引張力、耐薬品性を向上させることができます。
5. **繊維密度と積層方法:** 炭素繊維フェルトの繊維密度と積層アプローチを調整すると、床の形態と機械的耐久性を変えることができます。たとえば、繊維密度を増加させると、カーボンファイバーマットのエネルギーと圧力が向上しますが、さまざまな積層戦略の使用は、層間の結合電気と疲労耐性に影響を与える可能性があります。
カーボンファイバークロスのさまざまな繊維織り技術は、そのパフォーマンスに大きな影響を与えます。特に以下のコンポーネントの内部で影響を受けます。
1. **強度と剛性:** カーボンファイバークロスの繊維の織り方は、その電気と剛性に同時に影響します。たとえば、単純な織りでは、繊維が水平方向と垂直方向に静かに絡み合い、より高いパワーと剛性が与えられます。ツイル織りと同様に、繊維が斜めに配置されるため、より優れた引張抵抗と柔軟性が得られます。
2. **表面の平坦度:** 繊維の製織方法が異なると、カーボンファイバーファブリックの表面の平坦度に影響します。たとえば、平織りカーボンファイバー素材は平らな表面を持ち、きれいな床が必要な用途に適しています。綾織りの場合でも、繊維が絡み合っているため、表面はほとんど粗くなりません。
3. **柔軟性と可塑性:** 独自の繊維織り戦略を使用したカーボンファイバークロスには、柔軟性と可塑性にも違いがあります。ポジティブウィービング技術のカーボンファイバークロスは曲げたり曲げたりするのが簡単で、複雑な形状や曲面を必要とするいくつかの用途に適しています。
4. **エネルギー吸収能力:** 織り方のアプローチは、カーボンファイバー素材の強度吸収能力にも影響します。たとえば、一部の編み技術は、より優れたエネルギー吸収性の家を提供でき、スポーツ用保護具や航空宇宙機器など、エネルギー吸収の安全性が必要なプログラムに適しています。
5. **コストと製造の複雑さ:** 繊維製織戦略の違いにより、炭素繊維材料の製造料金と製造の複雑さにさらに影響が及ぶ可能性があります。一部の複雑な織り技術には追加の製造ステップとより高い技術要件が必要となる場合があり、そのため製造料金が増加します。